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Abstract: The patterns of activity/sleep, eating/fasting, etc show that our lives are under the 

control of an internal clock. Cancer is a systemic disease that affects sleep, feeding, and metabo-

lism. All these processes are regulated by the circadian clock on the one hand, but on the other 

hand, they can serve as signals to tighten up the patient’s circadian clock by robust daily routine. 

Usually, anticancer treatments take place in hospitals, where the patient’s daily rest/activity pattern 

is changed. However, it has been shown that oncology patients with a disturbed circadian clock 

have poorer survival outcomes. The administration of different anticancer therapies can disturb 

the circadian cycle, but many cases show that circadian rhythms in tumors are deregulated per 

se. This fact can be used to plan anticancer therapies in such a manner that they will be most 

effective in antitumor action, but least toxic for the surrounding healthy tissue. Metabolic pro-

cesses are highly regulated to prevent waste of energy and to ensure sufficient detoxification; as 

a consequence, xenobiotic metabolism is under tight circadian control. This gives the rationale 

for planning the administration of anticancer therapies in a chronomodulated manner. We review 

some of the potentially useful clinical praxes of anticancer therapies and discuss different pos-

sible approaches to be used in drug development and design in the future.
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Introduction
The patterns of activity/sleep, eating/fasting, etc show that our lives are under the 

control of an internal clock. The major quality of the circadian clock is its mainte-

nance in constant darkness (free-running conditions), while light at dawn serves as 

a resetting signal to set our clocks to approximately 24 hours.1,2 This clock is in the 

hypothalamus of the brain in the suprachiasmatic nucleus (SCN), a region above the 

optical chiasm (reviewed by Okamura3 and Weaver4). The SCN receives photic signals 

from ganglion cells in the retina, which enables the SCN to sense the start of each 

day at dawn. The clock in the SCN is the central oscillator, but many other tissues 

have their own clocks as well – peripheral oscillators that regulate different tissue-

specific metabolic processes. These metabolic processes have to be tightly regulated 

to prevent waste of energy and to ensure sufficient detoxification. Circadian clocks 

are maintained with finely regulated molecular mechanisms ticking in each individual 

cell, different cells in a tissue need to be orchestrated, and clocks between different 

tissues need to be synchronized. Only in that way can an organism be fully functional. 

If desynchronization of any of these systems occurs, or if the circadian clock stops 

ticking because of mutations in clock genes, then different discordances can occur 

that lead to the development of different diseases, including cancer.
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Molecular mechanisms of circadian 
rhythms
The clock responsible for circadian regulation in free-

running conditions is represented by a set of transcription 

activators and repressors. Genes encoding the core clock 

components are transcribed periodically. They are involved 

in transcriptional–translational–post-translational modifica-

tion loops that serve autoregulation as well as the regulation 

of circadian expression of output genes. The first core clock 

gene identified was Circadian locomotor output cycles kaput 

(Clock).5,6 It is accompanied by transcription factors Brain 

and muscle Arnt-like protein-1 (Bmal1) and Neuronal PAS 

domain protein 2 (Npas2) as activators, and Period (Per) 1 

and 2 and Cryptochrome (Cry) 1 and 2 as repressors. On the 

protein level, CLOCK/BMAL1 or NPAS2/BMAL complex 

binds to E-box DNA elements in promoter regions of dif-

ferent genes, among others, and also to promoter regions of 

repressors Per1,2 and Cry1,2.5,7,8 PER heterodimerizes with 

the CRY, and they bind to the BMAL1/CLOCK (NPAS2) 

complex and attenuate its activity. As a consequence, the 

transcription of Per genes is stopped, completing the first 

autoregulatory loop. When the pool of PER and CRY proteins 

is diminished owing to protein degradation, PER and CRY 

are removed from the BMAL1/CLOCK complex, and tran-

scription is reactivated.9,10 The degradation of PER and CRY 

is controlled through posttranslational mechanisms.11,12 In 

addition to this core clock regulation, several oscillators help 

to maintain the robustness and precision.

Circadian regulation of cell cycle 
check points and DNA repair
The circadian clock is a cell-autonomous and self-sustained 

oscillator with a period of about 24 hours. In growth condi-

tions, successive divisions and progression through the cell 

cycle can also be considered as a periodic process.13 The 

cell cycle duration in mammalian cells typically lasts on the 

order of 1 day.14 Cell cycle states fluctuate with circadian 

time in different organisms: cyanobacteria,15 fungi,16 zebra 

fish,17 and mammalian cells.18,19 Mitotic indices are known 

to exhibit clock-dependent daily variations.18,20,21 This has led 

to a model where the circadian clock may establish temporal 

windows in which certain cell cycle transitions are favored 

or suppressed – circadian gating of the cell cycle. Study 

in a regenerating mouse liver showed that WEE1, which 

limits the kinase activity of CDK1 and prevents entry into 

mitosis, is controlled at the transcription level with CLOCK/

BMAL1 and shows circadian activity. So it is functioning as 

a clock-dependent cell cycle gate.22 In primary fibroblasts, 

protein NONO interacts with PER and gates S-phase to 

specific circadian times.19

The hallmark of cancer is disrupted control of the cell 

cycle. Normal cell cycle progression requires several control 

check points, and if these are deregulated, this could lead 

to cancerogenesis.23 Many anticancer drugs act through the 

induction of DNA damage that causes irreparable lesions and 

stops the replication of DNA and leads to cell senescence. 

This effect is known as genotoxic stress.24 Genotoxic treat-

ments mainly target rapidly dividing cells: bone marrow, 

intestinal epithelium, and hair follicles, and therefore cause 

common side effects such as myelosuppression, mucositis, 

and alopecia. All these tissues harbor functional clocks, and 

the circadian regulation of cell cycle check points could 

help protect normal tissues from genotoxic stress-induced 

treatments.25,26

Sensing the DNA damage at the cell cycle check points is 

mediated by two protein kinases: ATM (ataxia telangiectasia 

mutated) and ATR (ATM-Rad3 related).27 ATM is activated 

when DNA double-strand brakes occur and phosphorylates 

CHK2 kinase. PER1 interacts with ATM/CHK2 complex. 

When Per1 is downregulated, ATM-dependent phosphoryla-

tion of CHK2 is impaired. Tumor cell lines with downregu-

lated Per1 are therefore more resistant to anticancer drugs.28 

TIM (Drosophila homolog TIMELESS) associates with core 

circadian proteins PER and CRY.29 Human TIM interacts 

with cell cycle check point proteins CHK1, ATR, and ATR 

small subunit ATRIP. These interactions are stimulated with 

hydroxyurea and UV light, which cause DNA damages. 

Downregulation of TIM results in ATR-dependent phospho-

rylation of CHK1.30

If the damage of DNA does appear, the cell has dif-

ferent mechanisms to repair it. One of the mechanisms to 

repair single-strand DNA brakes is nucleotide excision 

repair (NER). CRY evolved from the family of crypto-

chrome/photolyases,31 and this fact suggests that CRY 

could be involved in DNA repair mechanisms. Indeed, plant 

CDP-photolyases interact with the CLOCK/BMAL complex 

in a similar fashion as mammalian CRYs, and they are able 

to compensate for Cry deficiency and restore circadian oscil-

lations in cell lines and liver.32 Mammalian CRYs regulate 

the NER mechanism, which displays daily oscillations in 

the brain and liver.33,34 NER also removes cisplatin-induced 

DNA damage, and this activity displays circadian oscillations 

in liver extracts.34 NER is constantly high in Cry-deficient 

mice, which suggests that circadian clock downregulates the 

activity of NER at certain times of the day. Development of 
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skin tumors depends on time of exposure to carcinogens and 

negatively correlates with NER activity.35

The circadian clock mechanism is also involved in the 

double-strand brakes repair mechanism. When checked for 

genes that are involved in mitomycin C sensitivity, the list 

of candidate genes included also CLOCK protein. In experi-

ments with laser-induced damage, CLOCK was shown to 

colocalize with γ-H2AX protein, marker of double-strand 

DNA brake sites.36 These findings define core circadian clock 

protein CLOCK as a regulator of several mechanisms of DNA 

repair induced by different genotoxic agents.37

Circadian rhythms and cancer
The circadian clock regulates the normal cell cycle and 

apoptosis,38 and anticancer drugs usually target different 

stages of the cell cycle, so differences in the cell cycle in 

cancerous versus healthy cells represent the rationale of 

anticancer chronotherapy.39 In mice and rats, rhythm in 

tolerance of many anticancer drugs was shown: cytokines, 

cytostatics, antiangiogenic agents, cell cycle inhibitors, 

etc.39 Experimental evidence shows that both dose and 

circadian timing play a critical role in antitumor efficacy, 

using tumor growth inhibition and increase in life span as 

measure.39

Alterations in clock genes in tumors versus healthy tis-

sue can cause increased susceptibility to develop cancer 

and poor patient survival. This was shown for colorectal 

cancer,40,41 chronic lymphocytic leukemia,42 epithelial ovar-

ian cancer,43 and breast cancer.44 In various epidemiological 

studies, it was shown that single nucleotide polymorphisms 

in clock genes are associated with higher cancer risk for 

prostate cancer (CRY2 rs1401417: G.C, 1.7-fold higher 

risk),45 breast cancer (NPAS2 Ala394Thr),46 non-Hodgkin’s 

lymphoma (CRY2 rs11038689, rs7123390, rs1401417),47 and 

colorectal carcinoma (CLOCK1 311T.C, CC 2.78-fold and 

TC 1.78-fold higher risk).48 Gene expression of all three PERs 

is deregulated in breast cancer cells, and PER1 expression 

is downregulated in most patients.49 PER1 is downregulated 

in non-small lung cancer tissues compared with matched 

normal tissues.28 PER2 mRNA levels are downregulated in 

several human lymphoma cell lines and in acute myeloid 

leukemia patients.50 In breast cancer, PER2 can bind to and 

destabilize estrogen receptor α.51 Polymorphisms in the 

number of tandem repeats in the polymorphic domain of 

PER3 can cause circadian disruption, increase inflammation 

by increased IL-6 levels, and therefore increase cancer risk.52 

Mutations in NPAS2 are associated with increased risk for 

breast cancer and non-Hodgkin’s lymphoma.47

Per2 mutant mice are predisposed to oncogenic 

transformation following γ-radiation,53 and crossing of Per2 

mutant mice with ApcMin/+ increases the frequency of polyp 

formation.54,55 Downregulation of Per2 expression increases 

tumor growth in vivo,56 and overexpression inhibits tumor 

growth.57 Similar effects are also observed for Per1.28,58 

Lower levels of Per1 and Per2 expression are found in human 

colorectal cancer tumors.59,60 All of the foregoing show that 

functional circadian clock might operate as a tumor suppres-

sor.61 Further evidence that circadian clock is disrupted in 

cancer is shown in the study of Soták et al:61 the expression 

profile of Dbp had robust circadian rhythmicity in the colonic 

mucosa of healthy mice and in the surrounding nonneoplastic 

tissue of tumor-bearing mice, but the amplitude of the tumors 

was reduced, and the amplitude was delayed. The rhythmic 

expression of core clock genes was markedly reduced in 

comparison with surrounding nonneoplastic tissue, and even 

more in comparison with colon mucosa of healthy animals.

Animal models used for studying tumors were treated 

with azoxymethane (AOM), following consumption of 

dextrane sodium sulfate (DSS). Soták et al61 showed that 

circadian rhythm in AOM mice changed, the possible 

mechanisms being: mutations of K-ras cascade lead to 

activated MAPK/ERK pathway, which represses BMAL1 by 

phosphorylation by MAPK; mutations in β-catenin activate 

the Wnt signaling pathway and prevent GSK3β phospho-

rylation that can modulate PER255 and BMAL162 protein 

stability; mutations in the TGFβ pathway cause TGFβ to 

bind to its type 2  receptor, as a result of which phospho-

SMAD3 forms a dimmer with SMAD4 and activates the 

transcription of the Dec1 gene – regulator of the clock.63 

All these pathways can also be involved in the induction 

of tumorigenesis.

A recent article describes using the cell line systems 

where RAS mutations were induced and transcription was 

measured with microarrays according to the circadian time. 

Results indicate that this mutation, which is a common driver 

of cancers (especially colorectal cancer), deregulates the 

circadian clock in cancers.64 These results raise the question 

as to whether the deregulation and desynchronization of the 

circadian clock (as in shift-work)65 cause cancer or whether 

cancer-causing mutations alter the circadian clock in tumors, 

thereby causing them to desynchronize.64

Epigenetic mechanisms and 
circadian clock
Epigenetic mechanisms are modifications of histones and/or 

methylation of DNA that influence compaction of chromatin 
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and accessibility of gene promoters to the transcription 

machinery. They are considered as mechanisms of transcrip-

tion regulation.66 Genes encoding circadian clock proteins 

are regulated by epigenetic mechanisms, such as histone 

phosphorylation, acetylation, and methylation, which 

have been shown to follow circadian rhythm.67,68 CLOCK/

BMAL1-mediated activation of clock-controlled genes has 

been shown to be accompanied by circadian changes in 

histone acetylation at their promoters.69 In fact, the transcrip-

tional factor CLOCK has also histone acetyltransferase activ-

ity.70 CLOCK binds to E-box regions of DNA and can activate 

the transcription of clock-controlled genes. CLOCK can also 

acetylate nonhistone proteins: it acetylates its transcription 

partner BMAL1 and facilitates CRY-dependent repression.71 

CLOCK associates also with histone methyltransferase 

MLL1 (mixed lineage leukemia 1) and recruits it to the pro-

moters of clock-controlled genes.72 MLL1 methylates histone 

H3 at lysine 4 (H3K4). This modification at the promoters 

of clock-controlled genes defines the active chromatin state 

and is rhythmical.

Histone deacetylase SIRT1 is a modulator of circadian 

clock machinery.73 SIRT1 activity is NAD+ dependent and 

is therefore metabolically regulated.74 The activity of SIRT1 

is circadian and is directly driven with rhythmic oscillations 

in NAD+ levels.75 The CLOCK/BMAL1 complex interacts 

with SIRT1 and recruits it to the promoters of rhythmic 

genes. SIRT1 also deacetylates nonhistone proteins such as 

BMAL1 (signal for CRY recruitment)71 and PER2 (enhances 

stability).73 SIRT1 also regulates several proteins involved 

in metabolism and cell proliferation. Gluconeogenesis is 

regulated via deacetylating PPARγ-coactivator α (PGC1α) 

and Forkhead box O1 (FOXO1).76 FOXO1 directly regu-

lates several gluconeogenic genes and PGC1α coactivates 

glucocorticoid receptor (GR). SIRT1 also regulates Liver X 

receptor (LXR) that regulates cholesterol metabolism.76

Histone deacetylase 3 (HDAC3) modulates acetylation of 

circadian genes responsible for lipid metabolism. REV-ERBα 

is controlled by the nuclear receptor corepressor 1 (NCoR1), 

which recruits HDAC3 to mediate transcriptional repression 

of target genes, such as Bmal1. HDAC3 recruitment to the 

genome was recently shown to be rhythmic in liver, and 

the depletion of either HDAC3 or REV-ERBα was shown 

to cause fatty liver phenotype.77 HDAC1 forms a complex 

with PER2, is recruited to the Per1 promoter, and represses 

its transcription.78

Altered epigenetic marks of different genes are described 

in several cancers regardless of anatomic region.79,80 Some 

of them are considered as possible diagnostic and prognostic 

cancer markers.81 DNA methylation is especially interesting 

because of its stability and simple accessibility in routine 

molecular diagnostic laboratories. Several regions of DNA 

are being considered for DNA methylation measurements 

also for the purposes of cancer screening programs.82,83

Acetylation-mediated epigenetic regulation of GR activ-

ity is important in the context of circadian regulation.84 The 

HPA axis (hypothalamic–pituitary–adrenal) is important not 

just as a stressor regulating system, but also as the most likely 

mediator of circadian signals from the central system in the 

SCN to the peripheral organs. Hormones involved in the 

HPA axis regulate one another’s secretions: corticotrophin-

releasing hormone (CRH) and arginine vasopressin (AVP) 

stimulate the pituitary gland to secrete adrenocorticotropic 

hormone (ACTH), which in turn stimulates the adrenal gland 

to produce glucocorticoids that are secreted in a circadian 

manner. Secreted glucocorticoids suppress higher regulatory 

centers, the hypothalamic paraventricular nucleus and the 

pituitary gland, forming a closed negative feedback loop that 

resets the activated HPA axis and restores its homeostasis.85 

The circulating levels of corticosteroids are circadian. In 

humans, cortisol zenith is reached in the early morning, and 

the nadir at midnight.85

Glucocorticoids function is regulated with the expression 

of the GR (nuclear receptor superfamily 3, group C, member 

1 – NR3C1). It is expressed virtually in all organs and tissues 

of the human body. GR is present in the cytoplasm bound to 

a larger protein complex; after binding glucocorticoids, it is 

conformationally changed and translocated to the nucleus, 

where it binds to a specific glucocorticoid response element 

(GRE), in the promoter regions of various genes. GR can 

act as an activator or repressor regarding the coregulators 

that bind to it.85 Human GR can be acetylated, and acetyla-

tion of GR attenuates the repressive effect of GR on nuclear 

factor κB.86 CLOCK acetylates GR in the nucleus, after GR 

binds the glucocorticoids in the cytoplasm and has translo-

cated to the nucleus.87 The rhythm of peripheral CLOCK 

activity (including acetylation) is circadian, and therefore 

the activity of GR is circadian as well and is opposite that 

of maximal glucocorticoid levels in the blood.88 If this fine-

tuned system is deregulated, it may lead to functional hyper-

cortisolism in target tissues, which could be associated with 

development of pathologic conditions.88 Glucocorticoids 

regulate the immune response, and deregulation could lead 

to chronic inflammation, which is a common physiological 

state of cancer. If the theory of cancer immunosurveillance 

and immunoediting is considered, a deregulated and dys-

functional immune system could speed up the escape phase 
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of tumor cells that would otherwise be eliminated by the 

immune system.89

Recently, it was shown that histone deacetylase SIRT1 

can directly regulate the expression of BRCA1, the gene, if 

mutated, that is associated with hereditary familial breast 

and ovarian cancers.90 BRCA1 inactivation events (mutation, 

promoter methylation, or knockdown) were accompanied by 

decreased SIRT1 levels and increased NAD+ levels, and a 

subsequent increase in SIRT1 activity. It is yet to be proved 

whether the BRCA1 mutation carriers show deregulated cir-

cadian clock in organs where BRCA1 seems to be of extreme 

importance (breast and ovary).

Circadian regulation of drug 
metabolism
For the purposes of anticancer therapy design, it is essential to 

know how drug metabolism is regulated, at which time points 

according to circadian rhythm detoxification enzymes are most 

effective, and when clearance of drugs will be the highest.

General
Nuclear receptors are sensors for induction of proper detoxifi-

cation enzymes. They are expressed in liver, white and brown 

adipose tissue, and display rhythmic patterns of expression.91 

From the group of nuclear receptors involved in xenobiotic 

metabolism, the pregnane X receptor (PXR), the constitu-

tive androstane receptor (CAR), and the small heterodimer 

partner (SHP) are strongly oscillating in the liver.91 The three 

PAR bZIP proteins DBP, TEF, and HLF are direct output 

mediators of the core circadian clock and are expressed in the 

liver where they regulate various genes involved in detoxi-

fication and drug metabolism. Triple knockout mice of PAR 

bZIP proteins (DBP, TEF, HLF) show a high morbidity rate 

and hypersensitivity to xenobiotic compounds and absence 

of CAR circadian expression profile.92

Nuclear receptors upregulate the expression of xenobiotic 

metabolizing phase I enzymes: CYPs, alcohol dehydroge-

nases, aldehyde dehydrogenases (Aldhs), carboxylesterases 

(Cess), and paraoxonases (Pons). They have oxidase, 

reductase, or hydroxylase activities93 and are regulated with 

ALAS1 and P450 oxidoreductase (POR). All CYPs require 

heme as a prosthetic group, and ALAS1 is the rate-limiting 

enzyme in heme biosynthesis.94 The availability of heme is 

strongly circadian, and so is the expression of Alas1, which 

is regulated by NPAS2.95 The transcription of both ALAS1 

and POR is decreased in PAR bZIP triple knockout mice.92 In 

these mice, the expression pattern of phase I enzymes (Cyp2b, 

Cyp2c, Cyp2a, and Cyp3a) is also changed: for Cyp3a4, 

Cyp2a4, and Cyp2a5, direct binding of DBP was shown.96,97 

The phase II group are conjugating enzymes, and they consist 

of many superfamilies of enzymes: sulfotransferases (SULT), 

UDP-glucuronosyltransferases (UGT), NAD(P)H-quinine 

oxidoreductases (NQO), epoxide hydrolases (EPH), Glu-

tathione S-transferases (GST), and N-acetyltransferases 

(NAT).98 Most phase II enzymes show diurnal variation in 

expression. Phase II conjugation of xenobiotics in liver has 

a circadian rhythm with more glutathione conjugation in 

the early light phase, glucuronidation in the late light phase, 

and sulfation in the early dark phase.93 In the group of phase 

III metabolizing genes, we find transporters that help in the 

uptake of xenobiotics from the blood to the liver or in the 

elimination of the metabolized xenobiotics, and many of them 

show circadian rhythmicity in expression.99 Most of these 

phase III enzymes were initially described as chemoresis-

tance proteins overexpressed in cancer cell lines. It may be 

interesting to investigate whether these transporters display a 

diurnal rhythmicity in visceral cancers in vivo, as this would 

have strong therapeutic implications.100

Circadian regulation of anticancer  
drugs metabolism
Circadian timing system also regulates metabolism of most 

anticancer drugs. The circadian rhythm of seliciclib, doc-

etaxel, irinotecan, mitoxantrone, and vinorelbine is probably 

the consequence of the circadian rhythm of Cyp3a.101,102 

Circadian tolerability of cyclophosphamide is regulated by 

the rhythmic Cyp2b10 and possibly Cyp2c29. Clock-control 

transcription factors Dbp, Tef, and Hlf regulate the expres-

sion of Cess1 and Cess2, which account for the increased 

biotransformation of irinotecan to SN-38 during the light–rest 

phase of mice.101,103 All enzymatic activities that generate the 

cytotoxic forms of 5-FU are highest during the dark–active 

phase in mice, when 5-FU is most toxic to healthy tissues.104 

The toxicity of platinum complexes is determined by the 

rhythmic phase of reduced glutathione (GSH). Liver and 

jejunum GSH levels are ten fold higher in the second half 

of the night compared with midnight in mice.105,106 UGT1A 

catalyzes detoxification of seliciclib, irinotecan, and SN-38. 

The highest UGT activity is reported during the dark–active 

phase of rats.107 But no consistent relationship is found 

between blood chronopharmacokinetics and chronotolerance 

for irinotecan, cyclophosphamide, cisplatin, carboplatin, 

oxaliplatin, interferon β, or seliciclib.39 The highest elimi-

nation is observed in mice treated with carboplatin at ZT8 

and with oxaliplatin at ZT16, despite both drugs being least 

toxic at ZT16.108
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Chronomodulating drugs and their 
potential in cancer treatment
One of the attractive ideas is to use chronomodulating drugs 

that could reset or hold the circadian cycle on a specific time 

point to be able to treat patients when the treatment would be 

most effective or help to restore the dampened clock because 

of the disease itself or the application of the treatment.

Circadian oscillation in cultured cells can be induced by 

different agents: high serum concentration,109 dexamethasone 

(GR agonist),110 forskolin (activator of adenylate cyclase),111 

phorbol-12-myrisate-13-acetate (PMA, activator of protein 

kinase C), fibroblast growth factor (FGF), epidermal growth 

factor (EGF), insulin, calcium ionophore calcimycin (induces 

apoptosis by intracellular Ca2+),112 endothelin,113 glucose,114 

prostaglandin E2,115 NAD75,116, heme,117 and cAMP.118 These 

compounds induce rhythm through different pathways.119 

Thus, many different compounds could be used to modu-

late the circadian clock on different points of the circadian 

cycle.

One of the experimental approaches is to screen different 

chemicals and observe their effect on the circadian cycle with 

the use of stably transfected Luc reporter cell lines. One of 

such screens revealed the drug that inhibits glycogen synthase 

kinase 3β (GSK-3β), which shortens the period of oscillations 

in U2OS cells.120 In mammals, GSK-3β has been previously 

identified as a kinase that directly phosphorylates several 

core clock proteins and mediates their degradation (CRY2,121 

CLOCK,122 and BMAL162,123); increases nuclear transloca-

tion (PER2122); or increases stabilization (REV-ERBα124). 

Another group identified a small molecule, named longday-

sin, that lengthens the circadian period of different cultured 

cells as well as mouse SCN explants.125 Longdaysin targets 

several protein kinases, CK1δ, CKIα, and ERK2. The role 

of CK1δ and ERK2 in the regulation of the circadian clock 

was previously known, but CKIα was new and it appeared 

that it directly phosphorylates PER1 and promotes its 

degradation.125 If other parameters, such as amplitude of oscil-

lation or rhythmicity, are considered, a wide screen identified 

several small molecules, that caused a significant increase 

in the amplitude.126 That correlates with the expression of 

clock-output genes such as Dbp and Rev-Erbα. Some of the 

newly identified small molecules mediated acute induction 

of Per2, followed by the phase delay, as seen in the effect of 

forskolin on SCN slices.118 Another screen identified a small 

molecule that prevents degradation of CRY and lengthens the 

circadian period.127 This allows studies of gluconeogenesis, 

since CRY negatively regulates the transcription of two rate-

limiting enzymes, phosphoenolpyruvate carboxykinase 1 

(Pck1) and Glucose-6-phosphatase (G6pc).128,129 Treatment 

with this compound repressed glucagon-mediated induction 

of Pck1 and G6pc and production of glucose, so it could be 

considered a potential clock-based therapy for treatment of 

diabetes.127

Many core clock proteins have also clock-independent 

physiological functions,130 so small molecules that would 

modulate individual clock proteins may be considered as 

more specific therapeutic drug. CLOCK/BMAL1 function-

ality was changed during genotoxic treatment,102 so screen 

for modulators of its functionality was performed.131 These 

studies used mice with different impaired clock genes, and 

although all were behaviorally arrhythmic, they displayed 

an opposite response to toxicity induced by chemothera-

peutic cyclophosphamide. Animals with a deficiency of 

clock activators (Clock mutant mice, Bmal1 KO mice) 

were extremely sensitive to cyclophosphamide, whereas 

mice with a deficiency of clock repressors (Cry double KO 

mice) were resistant to the treatment. This data suggests that 

circadian transcriptional activators could be potential targets 

for pharmacological modulation to protect normal tissues 

from damage induced by genotoxic treatments. A screen 

of CLOCK/BMAL1 activity modulators revealed sev-

eral known regulators of circadian function132 as well as 

some new chemicals such as organic selenium compound 

L-methyl selenocysteine.131 Selenium prevents the bind-

ing of transcription repressor Tieg1 to the SP-1 binding 

site in Bmal1 promoter, upregulates Bmal1 transcription, 

increases BMAL1 protein and probably activates the 

CLOCK/BMAL1 complex. This effect was shown in vitro as 

well as in vivo with the use of a selenium-supplemented diet 

or by injecting it. The in vivo effect was tissue-specific, since 

selenium-induced BMAL1 effects were seen in the liver, 

but not in the SCN. This means that there was no change in 

the behavioral parameters. This presents huge therapeutic 

potential, since it does not disturb the central clock. This 

mechanism is mediated through BMAL1 only, since sele-

nium failed to reproduce the effects in Bmal1 KO animals. 

Selenium already has two major clinical implications: tumor 

prevention and protection against DNA damage induced by 

anticancer therapy – radiation. Selenium supplementation 

moderates mucositis induced with fractionated doses of 

ionizing radiation133 as well as diarrhea in treated patients 

with cervical and uterine cancers.134

CLOCK/BMAL1 functionality was also studied in the 

Cry-deficient mouse model, where an interesting mechanism 

of pharmacological interest was described. It has been found 

that Cry double KO mice in p53-null background are rendered 
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more sensitive to UV-light-induced apoptosis.135 This increase 

was due to CLOCK/BMAL1 upregulation of p73-dependent 

apoptosis. In the absence of p53, downregulation of Cry 

enhances the expression of p73, and this correlates with 

increased levels of the Egr1 (early growth response 1) gene. 

Egr1 is a positive activator of p73136 and is itself directly regu-

lated by CLOCK/BMAL1. Egr1 is consistently upregulated 

in Cry-deficient cells owing to downregulation of BMAL1.137 

EGR1 binds to the promoter of p73 and is a positive regula-

tor. Negative regulator C-EBPα is also present at the p73 

promoter, but upon exposure to UV light, only EGR1 stays 

bound to it. A similar effect was observed when tumor xeno-

grafts were treated with oxaliplatin.137 These findings suggest 

a therapeutically interesting mechanism for sensitizing tumor 

cells that are deficient in p53 function through the activation 

of the p73-dependent apoptotic pathway.

Chronotherapies in oncology: 
possibilities and options
The idea of chronotherapy is to administer each drug accord-

ing to a delivery pattern with precise circadian times in order 

to achieve the best tolerability and efficacy.138 Multichannel 

programmable pumps enable drug administration accord-

ing to precisely timed infusion rates in order to deliver 

chronotherapy with minimal interference with the circadian 

pattern of the daily life of the patient.139 Even oral chemo-

therapy can be administered in optimal chronotherapy fash-

ion. The examples of good practices of oral chronotherapy 

are described for busulfan,140 6-mercaptopurine,141 and oral 

fluoropyrimidines.142 In future, oral chemotherapeutics could 

be delivered with chronoprogrammed release formulation that 

would not disturb the patient’s nighttime sleep rhythm.143

Oncological chronotherapies were extensively studied 

on rodents. Circadian timing largely modifies the extent of 

toxicity of many anticancer drugs: cytostatics, cytokines, 

and targeted biological agents. A lethal dose of any of these 

drugs results in two fold to more than ten fold changes as 

a function of circadian timing of drug administration.39 

Such large differences occur irrespective of delivery route 

(oral, intravenous, intraperitoneal, or intra-arterial) or 

the number of daily or weekly administrations. Circadian 

rhythms in the tolerability of anticancer drugs persist in 

rodents kept in constant darkness or in constant light, 

which demonstrates their endogenicity. Circadian time for 

best tolerability and efficacy was determined for several 

chemotherapeutic drugs, and both times overlap. Even 

when combined, chemotherapeutic agents display the least 

toxicity near their respective times of best tolerability as 

single agents, as shown for doxorubicin–cisplatin in Lou 

rats,144 irinotecan–oxaliplatin,145 or gemcitabine–cisplatin146 

in B6D2F1 mice, and docetaxel–doxorubicin in C3H/He 

mice.147

The first clinical study that showed that therapy timing is 

important for the best outcome was on patients with non-small 

cell lung cancer.148 Trials with ovarian cancer patients showed 

better tolerability as compared with treatment 12 hours 

apart. DNA-intercalating agents doxorubicin and epirubicin 

were best tolerated when administered in the morning, and 

alkylating-like drug cisplatin when administered in the late 

evening.149,150 This initial finding did not alter the clinical prac-

tice for drug administration because of practical difficulties 

until the development of programmable intravenous systems 

that enable chronomodulated administration of up to four 

drugs. A good example is commonly used chemotherapeutic 

oxaliplatin that was initially found too toxic in Phase I clinical 

testing for use in colorectal carcinoma. Chronotherapeutic 

mouse studies revealed a ten fold change in toxicity with 

respect to dosing time.108 This finding led to the randomized 

Phase I two-arm study: in the first one, patients received chro-

nomodulated infusion with peak at 4 pm as compared with 

the second arm, where patients were treated with constant 

rate infusion. Chronotherapy induced fewer peripheral sen-

sory neuropathies, as this is the most common side effect of 

the drug.151 A study on metastatic colorectal cancer patients 

showed that most antitumor activities were recorded in the 

group of patients on chronotherapy.152

Chronomodulated oxaliplatin infusion was combined 

with 5-fluorouracil-leucovorin (5-FU-LV) with a peak flow 

rate at 4 am. On the incidence of mucosal toxicities and the 

peripheral sensory neuropathy, the researchers concluded 

better tolerance as compared with constant rate infusion.153,154 

The best tolerated chronotherapy schedule also achieved best 

tumor shrinkage.24 When compared with the conventional 

delivery schedule of the same drugs, overall survival was 

similar in both treatment groups.155 Chronomodulated drug 

delivery significantly reduced the risk of early death in male 

patients by 25%, while the opposite finding was recorded 

for female patients. Median survival showed a difference of 

6 months between men and women on the chronomodulated 

drug delivery regime, while no sex-related difference in sur-

vival was found in patients on a conventional delivery regime. 

The majority of preclinical studies were performed on male 

mice, and findings adequately predict the optimal timing for 

male patients, since the researchers did not have any valid 

prediction for female patients. It has been shown that sex 

difference is important in chronotolerance of irinotecan in 
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mice.156,157 The rhythmic expression of almost 2,000 genes 

when compared in the oral mucosa of healthy male and 

female volunteers differed. In this group, we can also find 

clock-controlled genes important for drug metabolism and 

cellular proliferation.20 In general, drug metabolism pathways 

indeed display sex differences.158 Cry1 and Cry2 seem to be 

important to sustain sex-related differences in drug metabo-

lizing cytochrome P450 dimorphism.159

In the conventional delivery protocol, the higher the 

toxicity is, the more efficient is the chemotherapy, but in 

the chronomodulated delivery protocol, the higher the tox-

icity, the poorer the outcome predicted. Toxicity was mea-

sured with the rate of severe neutropenia.160 The European 

clinical trial confirmed that chronomodulated therapy of 

hepatic metastasis of colorectal cancer with irinotecan, 

5-FU, and oxaliplatin administered through hepatic arterial 

infusion was safe and that one-third of patients manifested 

tumor shrinkage.161 Design of the time schedule proved 

to be important also for radiation therapy in patients with 

head and neck cancer, where morning procedures caused 

less severe oral mucositis as compared with afternoon 

procedures.162 Similarly, the morning gamma knife radio-

surgery doubled median survival as compared with the 

afternoon procedure.163

Another approach for anticancer treatment is immu-

notherapy, where therapies are focused on the adaptive 

immune response system: on cytotoxic T cell response and, 

more recently, stimulation of CD4+ T helper cells (Th).164 

Th cells activate antigen-specific effector cells and recruit 

the innate immune system such as macrophages, eosino-

phil granulocytes, and mast cells. Tumor antigen-specific 

Th cells are activated by either antigen-presenting cells or 

directly by major histocompatibility complex (MHC) class II 

expressing tumors. Many vaccine strategies aim to stimu-

late the Th response specific for a tumor antigen. Immune 

functions show circadian variations: circulating antibodies, 

total lymphocytes, and cell-mediated immune responses.165 

Circadian rhythm thereby influences the organization of cel-

lular immune function. Levels of T cytotoxic lymphocytes, 

natural killer cells, and γδTCR-bearing cells in peripheral 

blood, show the lowest levels at night and rise to a maximum 

around midday, whereas CD4+ Th cells have higher nocturnal 

levels.165,166 In addition, circadian changes can be observed in 

the process of cell production, release and action of cytok-

ines and chemokines that influence cell redistribution to the 

bone marrow, mobilization, and migration to lymphoid and 

nonlymphoid organs. Different lymphocytes populations, 

the level of IL-2, melatonin, and cortisol were compared in 

normal healthy controls with non-small lung cancer patients. 

In healthy controls, circadian rhythm was observed in CD8+, 

CD16+, γδTCR cells, and cortisol levels peaking at daytime, 

and in CD3+, CD4+, CD20+ cells, and melatonin levels peak-

ing at nighttime. In non-small lung cancer patients, circadian 

rhythm was observed in CD16+, γδTCR cells, and cortisol 

levels peaking at daytime, and CD4+, CD25+ cells, and 

melatonin levels peaking at nighttime. Although levels differ, 

the similarity in peak times for some lymphocyte subsets and 

hormones suggests that timed circadian administration of 

immunotherapy may improve the efficacy of treatment.165 As 

evidence for this, it was shown that CD4+ T cell responses are 

regulated by a cellular circadian oscillator capable of driving 

rhythmic CD4+ T cell immune responses.167

Each person has his or her own circadian rhythm, and 

unlike studies performed on rodents with identical genetic 

background, these interindividual differences in humans 

should be taken into account when chronotherapies are mod-

eled and designed. Depending on our everyday routine, we 

are ranked into different chronotypes that are dependent on 

age, sex, geographical location, and genotype.168 To obtain 

informative data that are feasible in clinical settings, different 

noninvasive approaches are considered. One such measure-

ment is actimetry, which is based on rest–activity pattern 

monitoring of the individual. To get reliable data, recording 

over several days (eg, 1 week) and the use of a wristwatch 

accelerometer are recommended.169 Rest–activity pattern 

can differ largely among cancer patients.170,171 Circadian 

rhythm disruption is a robust predictor of long-term survival 

outcomes in metastatic colorectal patients.170 It was shown 

that chemotherapy could disrupt a patient’s circadian rhythm, 

which is also a poor predictor of survival.160 Another pos-

sible measurement of circadian rhythm is body temperature. 

The core body temperature can be measured with the use 

of rectal probes where high values usually occur in the 

late afternoon and the nadir is reached at late night.172 This 

system is not particularly comfortable for cancer patients. 

The temperature can also be measured at skin surface: the 

highest measurement is usually recorded at early night, 

and the lowest in the early morning.173 The measurement 

of skin surface temperature, the rest–activity pattern, and 

position recording was called TAP (Temperature-Activity-

Position). TAP displayed stable measurement of individual 

rhythm compared with individual measurement and could 

be best served as a readout of cancer patient chronotype 

measurement.174

Patterns of hormones cortisol and melatonin vary dur-

ing the day and can be measured noninvasively: in saliva 
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(cortisol and melatonin) and in urine (melatonin). Melatonin 

secretion usually peaks at early night and is strongly inhib-

ited by night light in humans,175 while cortisol secretion 

peaks around the waking hours, with lowest levels at early 

night.176 The combination of these two can represent a new 

readout of the patient’s chronotype. Salivary cortisol patterns 

are prognostic factors for the survival of metastatic breast 

cancer patients,177,178 ovarian carcinoma patients,179 and lung 

cancer patients.180 No such relation was found for metastatic 

colorectal patients.181

Conclusion
Experimental and clinical reports show that a robust circadian 

system is relevant for host control of cancer progression and 

treatment tolerability, that its disruption accelerates cancer 

progression, and that it is an independent prognostic factor 

for the survival of patients with different cancers.170,178,182 

Chronobiotics such as bright light, physical and social activ-

ity, meal timing, and sleep patterns could further strengthen 

or resynchronize the circadian timing system183,184 and help 

to improve anticancer therapy outcome.
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